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Abstract. Island growth is studied in the case of island aggregation and break-up during submonolayer
deposition. It is demonstrated that the island size distributions are of the scaling form and the mean island
size has a power-law behaviour corresponding to hyperthermal deposition conditions. The corresponding
scaling exponents are analytically derived and compared with the simulations by the revised particle
coalescence method developed here. The scaling exponents are found to depend only on the homogeneity
exponents of aggregation and fragmentation kernels.

PACS. 68.55.-a Thin film structure and morphology – 68.35.Fx Diffusion; interface formation –
36.40.Sx Diffusion and dynamics of clusters

1 Introduction

Surface growth in the submonolayer regime proceeds via
adatom deposition onto a surface, nucleation of adatom
islands, and gradual growth of these islands at low cov-
erages. In this growth regime a wealth of information
about the effects of various microscopic processes can be
obtained from the distribution of island sizes, the aver-
age island size, and the average areal density of islands.
In most studies the focus has been on adatom diffu-
sion [1–3], island mobility [4–6], and reversible aggrega-
tion through adatom detachment from islands [7–9]. The
effect of island fragmentation or breakup on growth has
been described as well [10]. It has been suggested that
each of the above mentioned processes can have effects
in practical deposition conditions, such as ion beam as-
sisted deposition (IBAD) [11] and low energy ion depo-
sition (LEID) [8,9,12]. Using standard Molecular Beam
Epitaxy descriptions in the hyperthermal deposition leads
to severely restricted predictions already on a qualitative
level. For example, the size distributions are broader and
the scaling exponents for the mean island size are dif-
ferent in hyperthermal case as compared with thermal
deposition [8,12]. During hyperthermal deposition island
breakup or fragmentation may be one of the processes
affecting growth, e.g. by increasing the density of small is-

a Present address: Institut Français du Pétrole, Groupe de
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lands. On the other hand, creation of additional nucleation
sites [11] and enhanced adatom detachment from islands
may have similar consequences on growth [12]. The effects
of microscopic processes on observable features of growth
are, however, not yet fully understood in the case of island
aggregation and fragmentation. The importance of these
processes can be examined by using the reaction-rate de-
scription and rate-equations, which have turned out to be
a powerful approach in surface growth problems [1–3].

In order to clarify the role of island breakup and dif-
fusion on growth we concentrate here on a model system
where other processes are omitted. In that, rate equation
approach is used. Although the model including only ag-
gregation through island diffusion, island fragmentation,
and adatom deposition is not itself directly applicable to a
real deposition system, it enables us to study the scaling
relations of the mean island size and the size distribu-
tions. Detailed information about the scaling properties
is, however, needed in order to differentiate the effects of
island diffusion and fragmentation from other processes of
interest in real experimental situations. Some of the fea-
tures of growth specific to island diffusion and fragmen-
tation may thus become accessible to experimental verifi-
cation through these scaling properties, once the generic
behaviour of all microscopic processes are known.

We have previously studied the problem of island
growth where island aggregation and fragmentation have
been taken into account [10], but several open questions
remained. The present paper augments and completes the
previous study by giving analytical estimates for the scal-
ing exponents for the mean island size and the scaling
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function of the size distributions. Moreover, we describe
a revised simulation method to numerically solve rate
equations. The revised method facilitates to span a large
range in the parameter space needed for the accurate esti-
mates of the scaling exponents. We compare the analyti-
cal predictions both with the simulations using the revised
method and numerical integration of the equation for the
mean size. In both cases we find a good agreement.

2 Model system, rate equations, and scaling

The model system studied is reversible island growth,
where islands are allowed to diffuse and break-up dur-
ing growth. The purpose of the model is not to accurately
describe a real deposition process but instead to clarify
the generic features of growth in the presence of island
diffusion and break-up. When scaling properties of such a
model are known, it becomes possible to judge, whether
real systems exhibit similar characteristic features.

The island diffusion model employed is island size de-
pendent, following a simple power-law. This kind of island
diffusion is observed in metallic systems [13,14]. Although
the timescale for substantial movement of islands appears
to be much larger than the timescale of deposition, it still
can be expected to affect growth because even moderate
movement may lead to enhanced coalescence of islands
(for estimates of timescales see e.g. Ref. [6]). Also in ki-
netic Monte Carlo simulations mobilities of large islands
are seen to affect growth [5], an observation now estab-
lished by more idealized but yet phenomenologically rele-
vant simulations [4,6].

The fragmentation model introduced here, however,
may be of relevance in high enough deposition energies
in LEID exceeding 30–50 eV or in IBAD with energies
up to 100 eV. There is, however, no direct evidence of
supported cluster fragmentation, because it is not easily
available by experimental probes. Observations on related
phenomena of fragmentation of sputtered clusters [15,16]
suggest, that also clusters on surfaces break-up under en-
ergetic ion bombardment. It is also known that large is-
land boundary fluctuations – certainly promoted by ion
bombardment – lead to fragmentation of islands. In this
case, the distribution of fragments is a slowly decreasing
function of island size [16].

Although the models of fragmentation and island dif-
fusion are too idealized for detailed description of real de-
position systems, they contain qualitatively relevant in-
formation for clarifying the generic properties of growth
and resolving its scaling properties. In real deposition sys-
tems, moreover, many other processes may appear to be
more relevant. Detachment of single atoms from islands
may be more important than fragmentation, detachment
may mask the effects of diffusion of small islands [17], os-
cillations in diffusivity of small islands may be more sig-
nificant, and in practice only dimers and trimers could be
mobile enough to substantially affect growth [18]. All these
details are omitted from the present model, because their
inclusion would hinder the quantification and the classifi-
cation of the effects of island fragmentation and mobility.

Reversible island growth, with diffusion and fragmen-
tation as outlined above, can be described rather accu-
rately neglecting the spatial correlations between grow-
ing islands [4,19,20] (for estimates of time scales, see
Ref. [21]). The possibility to neglect the spatial correla-
tions means that island growth with mobile islands and
breakup can be modelled by using rate equations as a
reversible aggregation-breakup process Ai + Aj � Ai+j

of clusters of size i and j with the rates of aggregation
and breakup specified by the reaction kernels K(i, j) and
F (i, j), respectively. The rate equations for the areal den-
sity ns of islands of size s ≥ 1 in the system with incoming
particle flux Φ are given by [10]

dns

dt
= Φδ1,s +

1
2

∑

i+j=s

[K(i, j)ninj − F (i, j)ns]

−
∞∑

j=1

[K(s, j)nsnj − F (s, j)ns+j ]. (1)

The aggregation kernel for mobile islands with the dif-
fusion coefficient Di is given by K(i, j) = K0(Di + Dj)
for an island of size i, where the logarithmic size cor-
rections [4] are ignored, consistently with the point is-
land approximation used here. In many experimental re-
alizations the diffusion coefficient follows a power law
Di ∼ i−µ, which leads to the homogeneous aggregation
kernel K(i, j) = K0(i−µ + j−µ), where 1 ≤ µ ≤ 2 [14]. It
must be noted that there is some evidence [22] that for
small clusters the effective exponent 2 < µ < 3, but since
these results are inconclusive, we restrict our study to the
former case only. The fragmentation kernel F (i, j) of an
island of size s = i + j is also taken to be of the homo-
geneous form F (i, j) = F0(i + j)α. Only binary breakup
is allowed, which with −1/2 ≤ α ≤ 0 is a reasonable
choice for hyperthermal deposition [23]. It must be em-
phasized that the homogeneity exponents µ and α are the
only input parameters in the model, in addition to the
ratios R = K0/Φ (diffusion/deposition) and κ = F0/K0

(fragmentation/diffusion).
The complete analytical solution to the rate equa-

tions (1) is not possible, but valuable information and
properties of the solutions can be obtained through the
scaling arguments. In irreversible island growth it is well
known that s̄ ∼ Rγθβ with γ = 1/3 and β = 2/3
for point islands [2], where the mean island size is s̄ =∑

k≥2 k2nk/
∑

k≥2 knk, and θ =
∑

k knk is the fractional
coverage of islands. It should be noted that there are
somewhat different conventions to define the mean is-
land size [3,24]. These definitions, however, are essentially
equivalent since they lead to the same scaling relations.
Our choice is convenient for the scaling of the distribu-
tion p(x) defined below. In aggregation with fragmenta-
tion without deposition the mean size behaves differently
from irreversible growth, and it is found that s̄ ∼ κy with
y = 1/(µ+α+2) [25]. The two scaling forms of irreversible
growth and aggregation with fragmentation can be com-
bined into the single scaling form for the mean size [10]:

s̄ ∼ ΘyΨ(Θ), (2)
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where Θ = θ/θc, θc = R−γ/(β−y)κ−y/(β−y). The scaling
function Ψ(Θ) behaves as Ψ ∼ Θβ−y for Θ � 1, and
Ψ ∼ const. for Θ � 1.

The size distributions are expected to scale in the
quasi-stationary regime, where the only length scale is s̄.
We previously showed [10] that the scaling form similar to
island growth holds [2,3,24]:

ns(θ) =
θ

s̄2
f(s/s̄), (3)

where f(x) is a scaling function. It is convenient to intro-
duce a function g(x) = xf(x) describing the scaling of the
distribution p(s, θ) = sns(θ)/θ. This distribution can be
understood to be equal to the probability that a randomly
chosen adatom is contained in an island of size s [3,25]. We
suggested [10] that g(x) has the form g(x) ∼ xδ exp(−ax),
where a is constant and δ is a scaling exponent, similar to
aggregation with fragmentation [19]. After an initial tran-
sient stage the scaling function becomes independent of
coverage and of the parameters R and κ.

3 Revised particle coalescence method

The numerical solutions to the rate equations (1) can be
obtained using the particle coalescence method (PCM)
simulations [20]. In PCM islands are considered as point-
like objects, which grow by aggregating other islands and
adatoms with the probabilities specified by the aggrega-
tion kernel K(i, j) between islands of sizes i and j. The
islands are located on a lattice which does not correspond
to a physical lattice (so the symmetry is irrelevant), but
only represents an island size distribution at the given
coverage. This implies that the PCM approach simulates
the growth problem at a mean-field level, where all cor-
relations between islands are neglected. The point-island
approximation holds at small coverages and allows one to
define the reaction kernels in the rate equations exactly
since the geometric effects arising from the complicated
morphology of real islands are not taken into account.

Island growth with aggregation through island diffu-
sion, island fragmentation, and adatom deposition can be
simulated with PCM as follows. An island is randomly
chosen and its break-up is tested with the probability
given by the fragmentation kernel F (i, j). If the fragmen-
tation event fails, an attempt is made to move it into a
random position on the lattice. If this site is empty, the
island jumps with probability 1, otherwise an attempt for
an aggregation event is made with the probability speci-
fied by the reaction kernel K(i, j). An adatom is deposited
onto a random site after every 1/Φ steps.

In PCM the spatial variations in the island density
are neglected, which is implemented by allowing islands
to jump into empty lattice sites. The drawback of this
method is that most of the events during the simulation
only mix the system, and only a small fraction of all events
contribute to the evolution of the size distribution. This
leads to long simulation times, e.g. when R is increased.
The efficiency of PCM simulations can be improved by

removing the unnecessary jumps into empty sites as de-
scribed below.

In the traditional Metropolis Monte Carlo algorithm,
one chooses a transition with the uniform probability 1/N ,
where N is the number of possible transitions from the
initial configuration. The transition is then accepted with
the probability νi→f/νmax, where νi→f is the transition
probability from the initial state i to the final state f ,
and νmax is the maximum of all transition rates. The time
is then incremented by constant steps. It has been shown,
however, that the time can be advanced stochastically also
in Metropolis-type algorithms [26]. In this case the total
transition rate is given by ΓM = Nνmax, and the time
step ∆t is drawn from the distribution ΓM exp(−ΓM∆t),
whether the attempt to change the configuration is suc-
cessful or not [26]. The problem is to find ΓM appropriate
for the system.

The transition rate ΓM in island growth with aggrega-
tion, fragmentation, and deposition can be found as fol-
lows. The total number of possible aggregation events is
Naggr = Nisl(Nisl − 1), where Nisl is the total number
of islands. Total number of possible fragmentation events
is Nfrag = Nisl, since all islands are allowed to break-
up. Denoting the incoming monomer flux by Φ in units
of monolayers per second, the flux rate is given by L2Φ
(corresponding a two-dimensional system), where L is the
linear system size.

The crucial step is to remove the jumps into empty
sites. This implies that the relative rate of the aggregation
events is increased, which has to be balanced in the other
rates. The correction term is given by the number of empty
sites in the original lattice L2 − Nisl, which is equal to
the number of possible island jumps into a empty site in
the old PCM. The correct fragmentation and deposition
rates are then given by ΓF = νmax

frag Nisl(L2 − Nisl) and
ΓD = L2Φ(L2 − Nisl), respectively, while the aggregation
rate ΓA = νmax

aggrNisl(Nisl − 1).
Disregarding the jumps into empty sites, one needs

only a list containing all islands and their sizes. If an ag-
gregation event is chosen, one picks randomly two islands
from the list and makes an attempt to aggregate them
with the probability K(i, j). If a fragmentation event is
chosen, one island is randomly attempted to break-up with
the probability F (i, j). It should be kept in mind that the
maximum rates can depend on the form of the reaction
kernels. For example, for F (i, j) = F0(i+ j)η where η > 0,
νmax
frag depends on the largest island in the system.

4 Results

The scaling exponents can be obtained from the rate equa-
tion (1) together with the scaling ansatz for the size dis-
tributions. Equation (1) are multiplied by s2 and summed
over s. In the asymptotic limit s, s̄ → ∞, x = s/s̄ = const.,
one converts the sums into the corresponding integrals
and assumes that all integrals converge. The resulting
equations can be separated into time-dependent and x-
dependent parts giving the scaling exponents in the ini-
tial and final stage of growth. These exponents, defined in
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Table 1. Simulation results for the scaling exponents of the
mean island size and the scaling function of the size distribu-
tions are shown. The values for the exponents are given by the
analytical values from the rate equations (RE) and the simu-
lations (PCM). Errors in measured values are 0.05 in β, 0.02
in γ, and 0.05 in δ.

(µ, α) β γ δ
RE PCM RE PCM RE PCM

(2, 0) 0.66 0.72 0.33 0.34 3.00 2.93
(2,− 1

2
) 0.66 0.71 0.33 0.33 2.50 2.35

(1, 0) 1.00 1.02 0.50 0.51 2.00 2.00
(1,− 1

2
) 1.00 1.03 0.50 0.50 1.50 1.49

Section 2, are given by

β = 2/(µ + 1),
γ = β/2,

δ = µ + α + 1,

y = 1/(µ + α + 2). (4)

To our knowledge the results for β and γ are new, while
the values of δ and y are the same as in aggregation with
fragmentation [19,25]. The analytical values are compared
with the simulation results in Table 1, showing a good
agreement.

Similarly to the derivation of the scaling exponents,
from equation (1) follows the equation for the mean island
size:

d(θs̄)
dθ

= R [
c1θ

2+µ(θs̄)−µ − c2κθ−α−1(θs̄)α+2
]
+ 1, (5)

where c1 and c2 are constants depending on the form of
the reaction kernels K(i, j) and F (i, j), respectively. The
numerical integration of equation (5) gives a further sup-
port for the analytical value of the dynamic exponent.
Figure 1 shows the resulting behavior of the scaling func-
tion with the model (µ, α) = (2, 0). The scaling function
has a power-law behavior for Θ � 1, and it approaches a
constant value for Θ � 1. The inset shows the behavior
of the dynamic exponent as a function of coverage. It de-
creases from the initial value given by β = 2/(µ + 1) until
the quasi-stationary regime is reached, where s̄ ∼ θy.

The analytical estimates (4) for the scaling exponents
were confirmed with the revised PCM simulations. Typ-
ically the parameters were in the ranges 105 ≤ R ≤ 108

and 10−6 ≤ κ ≤ 10−3, using 5000 averages for small κ,
and 2000 averages for the largest κ. For small κ one can
do easily R = 109 within a reasonable computation time.
The simulations show that s̄ has a power-law behavior
with the dynamic scaling exponent β in the initial stage
and the exponent y in the aggregation-fragmentation dom-
inated regime. In the simulations it was found that β de-
pends only on island mobility for 0 ≤ µ < 2 and large
enough fragmentation rate. We also confirmed the valid-
ity of β = 2/(µ + 1) by performing few simulations with
µ = 0, µ = 1/2, and µ = 3/2 for small κ. However, the
prediction for the dynamic exponent β applies only to mo-
bile islands. The value β = 2/(µ + 1) holds until µ ≈ 2,
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Fig. 1. The scaling function Ψ obtained from integration of
the dynamic equation for the mean island size (Eq. (5)) is
shown here in the case (µ, α) = (2, 0) (arbitrary units). The
inset shows the behavior of the scaling exponent starting from
the value β = 2/(µ + 1) = 2/3 and reaching the saturation
value y = 1/(µ + α + 2) = 1/4. The dashed lines indicate the
analytical values.

after which β = 2/3 as predicted for immobile islands [2],
consistent with the rate equations (1). The exponent γ is
also found in simulations to be in a very good agreement
with the analytical value γ = 1/(µ + 1).

The fitted scaling function for the size distributions
of the form Axδ exp(−ax) is plotted in Figure 2 together
with the simulation data with (µ, α) = (2, 0). Similar be-
haviour with the exponent values δ given in Table 1 was
found for other combinations of (µ, α). The coefficients
A = aδ+1/Γ (δ + 1) and a = δ + 1 follow from the normal-
ization conditions

∫
g(x)dx = 1 and

∫
xg(x)dx = 1, where

Γ (δ) is the gamma function. The latter normalization is
derived by inserting the scaling ansatz to the definition of
s̄ used here. Thus the scaling function is specified com-
pletely with only one parameter δ, once the homogene-
ity exponents (µ, α) of the reaction kernels are given. In
reference [10] it was suggested that for x � 1 all scal-
ing functions collapse into a single curve, independent of
a. The data collapse is obtained for all coverages, and
the analytical prediction δ = µ + α + 1 is in good agree-
ment with the simulations. The inset shows the unscaled
size distributions ns with the coverages 0.05, 0.15, and
0.25 monolayers.

In reference [10] some of the results were still tenta-
tive and some open questions remained, such as analyti-
cal predictions for the scaling exponents and the depen-
dence of the scaling function of the homogeneity exponents
in the x � 1 regime. Now with the improved computa-
tional method, a much broader range of parameter values
and better statistics are obtained, and good agreement
with the mean field predictions is established. The revised
PCM is clearly faster than the old PCM. For example,
with R = 108 and κ = 0 (only island aggregation), the ra-
tio in CPU-time is 2000 in favor of the revised PCM. The
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Fig. 2. The scaling function g(x) = Axδ exp(−ax) is plot-
ted with the fitted δ (solid line) against the simulation data
(squares) in the case (µ, α) = (2, 0) with R = 107, κ = 10−5,
and L = 500. The inset shows the real size distributions with
the coverages θ = 0.05, 0.15, and 0.25 (from bottom to top).
The coefficients A and a are given in the text.

performance of the new method, however, decreases with
the increasing fragmentation rate, still remaining faster
than the old one. This is due to the fact that only aggre-
gation events are conducted faster in the revised PCM,
and with large κ the relative importance of fragmentation
events with respect to aggregation events increases. For
example, with (µ, α) = (1,−1/2), R = 106, and κ = 10−3

the ratio in CPU-time is 40 in favor of the new method.

5 Conclusions

Island growth with aggregation, fragmentation, and de-
position was studied with generalized rate equations. An-
alytical estimates for the scaling exponents of the mean
island size and the size distributions were derived from
the rate equations. In the model, island fragmentation and
aggregation were characterized by reaction rates with ho-
mogeneous kernels with exponents α and µ, respectively.

It was shown that initially growth proceeds with the
dynamic exponent β = 2/(µ + 1), while the growth expo-
nent is given by γ = β/2. In the final quasi-stationary
state the mean island size scales as s̄ ∼ θy with y =
1/(µ+α+2). In this region of growth the probability dis-
tribution, that an adatom is contained in an island of size
s, scales as g(x) ∼ xδ exp(−ax) with δ = µ + α+ 1. These
analytical predictions were obtained in the mean-field ap-
proximation, and they were confirmed by the numerical
integration of the equation of the mean island size. An
independent comparison was made with the particle coa-
lescence simulations using the revised method, and good
agreement was found in all cases studied.

The revised simulation method developed here enabled
us to simulate a large enough regime of the parameter
space in order to obtain the island size distributions with
small enough statistical errors. We were able to show that

the size distributions are of the scaling form and to char-
acterize the corresponding scaling exponents. The new
method could be also used in other systems where nu-
merical integration of the large set of coupled differential
equations is not practical.

The good agreement between the analytical predic-
tions and the simulation results show that the scaling ex-
ponents for the mean island size and the size distributions
depend in a unique way on the homogeneity exponents
of the reaction kernels. These findings suggest that it is
possible to obtain rather detailed information about mi-
croscopic surface processes by examining the scaling prop-
erties of island size distributions and the mean island size.

This work was supported by Academy of Finland through the
Project 73642.
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